Syndrome	Genetic Defect	Mechanism	Treatment
Glucocorticoid- remediable Aldosteronism (aka Familial Hyperaldosteronism Type I)	Chimeric gene formation (portions of 11 β-hydroxylase gene and the aldosterone synthesis gene)	Chimeric gene stimulates ACTH to generate aldosterone	Glucocorticoid (dexamethasone or prednisone) administration leads to decreased ACTH production
Apparent Mineralocorticoid Excess	Loss of function mutation of 11 β- hydroxysteroid dehydrogenase	Decreased 11β- hydroxysteroid dehydrogenase leads to increased circulating cortisol; cortisol activates the aldosterone receptor leading to increased sodium reabsorption in the renal principal cells	Restriction of dietary sodium. Mineralocorticoid receptor antagonists (i.e. spironolactone)
Congenital Adrenal Hyperplasia	Loss of function mutation leading to 11 β-hydroxylase deficiency	11β-Hydroxylase deficiency leads to increased ACTH and accumulation of 11- deoxycorticosterone (a potent mineralocorticoid) and 11-deoxycortisol. These elevated precursors also lead to increased responsiveness of Aldosterone Synthase to stimuli (Angiotensin II, Potassium)	Glucocorticoid administration.
Liddle Syndrome	Gain of function mutation in the β or γ subunits of the ENaC	Leads to marked increase in Sodium reabsorption irrespective of circulating aldosterone levels	Low salt diet plus distal nephron sodium transporter antagonists. Responds to: amiloride (inhibitor of distal renal ENaC) and Triamterene (Potassium sparing diuretics)
Type 2 Pseudo- hypoaldosteronism (aka Gordon's Syndrome; familial hyperkalemia)	Loss of function mutation in WNK kinases	Leads to distal sodium-chloride cotransporter activation, which leads to sodium retention, volume expansion, hyperkalemia	Triamterene or thiazide diuretics

 $\label{eq:action} ACTH-Adrenocorticotropic \ Hormone; \ ENaC-epithelial \ sodium \ channel$